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FINAL PROGRESS REPORT 
Title: Designing Active Coatings and Multilayer Composites: Harnessing Mechano-chemical 
Transduction in Responsive Gels; Funding: $364, 000 awarded for July 1, 2007 – July 1, 2010 

Polymer gels undergoing the Belousov-Zhabotinsky reaction—the BZ gels—are currently the 
only known polymer networks to autonomously convert chemical energy into mechanical action, i.e., no 
external stimuli are needed to drive this chemo-mechanical transduction. Our goal was to design systems 
that harness this unique behavior and thereby exhibit a range of novel functionality. To carry out these 
studies, we developed a new computational approach for modeling large-scale, three-dimensional 
deformations in polymer networks1. Combining this approach with our previously derived kinetic 
equations for the BZ reaction in polymers2,3, we 
undertook the first three-dimensional simulations of 
chemo-responsive gels1. Below, we describe some of 
our most recent findings. (Papers resulting from this 
support are listed at the top of the Bibliography.) 

With the development of the 3D simulation 
technique, we could now investigate the effect of a 
localized mechanical impact on a BZ polymer gel 
film4. Through these studies, we isolated a unique 
form of mechano-chemical transduction. In 
particular, we found that a localized impact can drive 
a system that was initially in the non-oscillatory state into the oscillatory regime3. The chemical waves are 
nucleated in the region of the local impact and propagate outwards (see Fig. I). Within the 3D system, 
these variations in chemical concentration produce propagating “ripples” on the surface of the film. We 
found that these oscillations and ripples depend on the magnitude and location of the applied force. 
Furthermore, we isolated a remarkable case where the system 
continues to oscillate even after the applied force is released.  

Our results on these 3D systems provide the first 
predictions that local mechanical deformations can excite traveling 
chemical waves and wide-spread oscillations within BZ gels. The 
findings open up the possibility of harnessing BZ gels for a range 
of applications. Specifically, these materials could be used to 
create sensors that not only can transmit a signal in response to 
mechanical impact, but also transport reagents to address the after 
effects. Since the nature of the oscillations indicates the strength 
and location of the impact, the coatings could also provide an 
“early warning system”, indicating that the underlying components 
need to be checked for incipient damage.  

Importantly, Profs. Irv Epstein and Bing Xu at Brandeis 
University have just obtained what appears to be the first 
experimental evidence of the mechano-chemical transduction in 
BZ gels predicted by our simulations (see Fig. II).  In particular, 
Xu has fabricated gels that incorporate the BZ catalyst, and Epstein and his postdoc Jorge Delgado have 
constructed an experimental setup that allows them to observe chemical waves in the gel. These are very 
preliminary results, and the experiments need considerable refinement. Nevertheless, this is a very 
promising proof of concept.  

As indicated by Fig. III, the localized mechanical impact can induce the BZ gels to generate 
ripples along the surface of the sample4. The propagation of these crests and troughs can be harnessed to 
transport microscopic objects, such as biological cells and synthetic microcapsules, within a microfluidic 

Fig. II. Chemical waves that were 
produced by mechanically 
perturbing the surface of a BZ gel 
using the tip of a needle. Image 
courtesy of Irving Epstein and Jorge 
Delgado, Brandeis University 
(unpublished data). 

Fig. I  Spatially localized force F drives the 
BZ gel to oscillate and transmit a global 

time F 



Fig. IV.  Motion of a BZ gel 
“worm” under non-uniform 
illumination. Through self-
sustained oscillations, the 
sample moves away from the 
light source. 

time

device or other devices for micro-analysis. 
In effect, these undulating surfaces could act 
as “micro-conveyor belts”. By probing the 
relationships between the features of the 
mechanical stimuli and the propagating 
chemical waves, we can facilitate the 
development of all these various devices. 

We note that the BZ reaction is 
photosensitive and by varying the light 
intensity, we can manipulate the response of 
the system. It is this interplay between the chemo-responsive polymer network and the photosensitive 
reaction that we recently exploited to direct the self-sustained movement of the gels5,6. To our knowledge, 
these are the first computational studies aimed at designing chemo-responsive polymer networks 
displaying autonomous functionality that can be controlled by light. Through these studies, we uncovered 
novel, nonlinear dynamical phenomena that arise from a coupling of chemical, optical and mechanical 
energy, and established design rules for creating millimeter-scale devices that effectively operate under 
their own power to perform valuable functions. 

In the above studies5,6, we focused on long, thin BZ gel filaments. We introduced a light source 
on the right side of this simulation box. In the presence of this non-uniform illumination, the periodic 
expansion and contraction of these BZ gels gives rise to a directed motion; Fig. IV shows snapshots from 
the simulations where the expanded regions are highlighted in blue and the contracted areas are marked in 
red. As can be seen, the pulsating gel moves away from the light source. Once guided along a particular 
path, the BZ gels will continue to move in that direction, even after the entire sample has left the 
illuminated region.  The results reveal that, on a basic level, these synthetic BZ “worms” exhibit one of 
the hallmarks of living systems: irritability. In particular, the gels move in response to an adverse 
environmental condition, which in the context of the BZ reaction is the presence of light.  

These simulations reveal that the light can be harnessed not only to direct the movement of a 
small BZ gel “worm”, but also control the overall morphology of the worm5,7, as shown in Fig. V. Here, 
the gel can be fashioned into a sigmoidal shape by 
illuminating only the two ends and keeping the 
central portion of sample in the dark. The gel 
effectively reorients to localize within the dark 
region. 

These prior studies put us in a unique 
position to undertake the proposed research, where 
we will design materials that exhibit a beneficial 
adaptive mechanism in response to mechanical 
deformation, undergoing structural changes that 
enhance the materials’ stiffness or strength. 

Fig. III.  Output from simulations revealing surface 
ripples (variations in height) along a portion of an 
oscillating BZ gel. The horizontal arrows mark the 
direction of the wave propagation.  

time 

Dark Region

Fig. V. BZ gel worm autonomously reorients 
to localize within the dark region 
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